Int. J. Solids Structures Vol. 22, No. |, pp. 1-11, 1986 0020-7683/86  $3.00 + .00
Printed in Great Britain. © 1986 Pergamon Press Lid.

RESONANT SCATTERING OF ELASTIC WAVES BY A
RANDOM DISTRIBUTION OF INCLUSIONS*

VikrAM K. KINRA
Department of Aerospace Engineering, Mechanics and Materials Center, Texas A&M
University, College Station, TX 77843, U.S.A.

and

PeINING L1
East China Institute of Chemical Technology, Shanghai, 201107 China

(Received for publication 22 April 1985)

Abstract—Moon and Mow considered the propogation of a piane longitudinal wave in a random
particulate composite consisting of a homogeneous distribution of rigid spheres in welded con-
tact with an elastic matrix. The main assumptions of their model are the inclusions are heavy
and rigid, the wavelengths are large and the suspension is dilute. One of the conclusions of
their analysis is that there exists a cut-off frequency which is associated with the translational
resonance of the individual particle in its elastic surroundings. The purpose of the present
experimental work is to demonstrate that in spite of the fact that their model rests on a number
of rather restrictive assumptions, it predicts the resonance frequency with a reasonable ac-
curacy. Therefore the model is good, well outside the range of its underlying assumptions.

1. INTRODUCTION

In a recent series of papers, the propogation of ultrasonic waves in particulate com-
posites has been studied experimentally by Kinra et al.[1-5]. The primary quantity of
interest was the phase velocity of longitudinal and shear waves in the composite (C)
and (C,), respectively. In [1], the attention was confined to the low-frequency regime.
In [2], all three frequency regimes of interest were studied: low, intermediate and high.
Consistent with the predictions of Moon and Mow[6], the wave propogation was found
to occur along two separate branches, namely, the acoustical branch and the optical
branch. The two branches were found to be separated by a range of frequencies over
which neither (C,) nor (C,) could be measured: this range was labeled the ‘‘forbidden
zone.”’ However, one of the key assumptions of [6]—that the inclusions should be
very much heavier than the matrix-——was not satisfied in [2]. Therefore it is not at all
surprising that a quantitative comparison, between the results of Moon and Mow and
the experiments of [2], was found to be rather poor. This problem was rectified in [3]
where lead—rather than glass—inclusions were used; only (C;) was measured. As
predicted by Moon and Mow, the longitudinal phase velocity was found to increase
rapidly with frequency in the vicinity of the predicted cut-off frequency. However,
this increase is continuous and, therefore, it is not possible to deduce precisely the cut-
off frequency, n., from the (C,) data. This provided the motivation for the present
work. Here, the emphasis is on the amplitude of an ultrasonic wave received through
a specimen: expectedly, as n — n.., the amplitude goes through a sharp minimum. Thus
in contrast to the phase velocity data, n. can be determined fairly precisely from the
amplitude data. The measured n. was found to be in excellent quantitative agreement
with the predictions of Moon and Mow. In the next section we briefly outline the theory
of Moon and Mow.

2. THEORY OF MOON AND MOW
Consider a single rigid sphere in an elastic matrix. If the particle is linearly dis-
placed from its equilibrium position (no rotation) and let go, it will undergo damped
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translational vibrations. The damping here is not due to the conversion of elastic energy
into heat (viscous damping). but rather due to the radiation of mechanical energy away
from the sphere in the form of elastic waves (radiation damping). The equation of motion
for the sphere was derived by Pao and Mow(7]. and its transient response was studied
by Mow{8]. Later Moon and Mow[6] showed that this equation of motion has the form
of a damped oscillator with memory. By taking this equation of motion as a starting
point, they constructed a model for the aggregate behavior of a random particulate
composite under the following key assumptions.

1. The spheres are dispersed in a statistically random and homogeneous manner: i.e.
in the aggregate, the composite behaves like an isotropic homogeneous medium.

2. The inclusions are heavy: i.e. p'/p > |, where p is the density. and () and ()’
denote the matrix and the inclusion material. respectively.

3. The inclusions are rigid.

4. The volume fraction of inclusions C < 1.0, the so-called dilute suspension. This
assumption allows the authors to ignore multiple interaction effects between the
particles.

5. The wavelengths are large. Let A, and A, be, respectively, the wavelength of the
longitudinal and the shear disturbances in the matrix, a be the radius of the sphere,
then A, and A, > a. In other words, k;a and k;a <€ 1, where the wave number &
= 2 m/\.

Moon and Mow examined the propagation of time-harmonic longitudinal waves
in such a material. They showed the existence of two separate branches of wave prop-
agation—the acoustical branch and the optical branch—separated by a cut-off fre-
quency, n.. Using a composite consisting of glass spheres of a constant radius in an
epoxy matrix, Kinra and Anand[2] measured (C,) vs n in both the long-wavelength and
short-wavelength regimes. Following Moon and Mow they conjectured that their data
falls along these two branches. We note that a glass/epoxy composite violates the
second assumption above. With o = 2mn and k = C,/C>, the cut-off frequency is given

by (6]
w? = of[1 + p'Clp(1 - O)], (1

where
w§ = 9pCila*p’ (2k* + 1). (2)

Here wo is the resonant frequency of a single particle in an unbounded medium. If the
wave speeds in egns (1) and (2) are substituted for, in terms of elastic constants E and
v, it turns out that the normalized cut-off frequency (k;a). is independent of the Young’s
modulus, and depends only on the Poisson’s ratio, v:

91 - 2»[p C
2 _ 2 _ A _
Q2 = (kia)? = o [p, 1T C] . (3)

The differential equations governing the motion of the composite are eqns (12) of
Ref. [6]; both equations are of order two and have constant coefficients. Analogous to
the classical spring/mass/dashpot system, Moon and Mow identified an undamped nat-
ural frequency wo, given by eqn (2), and a damping coefficient ¢, given by

¢ = 92k + 1)2p'1o(2k* + 1)7, (4)

where 1, is a characteristic time of the problem, namely, the time required by the
longitudinal wave to travel the radius of the sphere: vy = ¢/C,. Carrying the analogy
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a bit further, we define a dimensionless damping coefficient, £ (see any elementary text
on vibrations, e.g. [9]). It turns out that £ = c/wy, Or

£ = L5(p/p")"22k* + 1K + 1)>? )

Thus the composite behaves like an underdamped, critically damped or overdamped
system, whenever £ < 1, £ = 1| or £ > 1, respectively. Equation (5) was used in the
design of the present experiments. Note that £ ~ (p/p’); hence the choice of lead inclu-
sions in any epoxy matrix; p/p’ = 0.106. Thus ¢ = 0.31 < 1 (underdamped oscillator),
and one may expect to see a sharp resonance peak at n..

The purpose of the present work is as follows. Clearly, the theory of Moon and
Mow is based on some rather restrictive assumptions. For example, the model assumes
rigid inclusions. Lead is hardly *‘rigid’’ compared to epoxy. In view of the fact that
its shear modulus is small compared to its bulk modulus, it would be more appropriate
to treat lead like a fluid inclusion. Further, the theory completely ignores multiple
scattering effects. In our experiments, however, the rescattering effects are expected
to be quite strong for all but the lowest volume fraction of inclusions (C = 5%). Finally,
the theory assumes ka < 1; the experiments cover all three regimes of interest, namely,
ka small, comparable and large compared to one. It would seem, therefore, that their
model would have very limited applications. We will show that this is not the case. In
fact, their model accurately predicts n. across the entire range of volume fractions;
namely, from a dilute suspension (C = 5.4%) to a concentrated mixture (C = 34%).
Thus their theory is shown to be good, well outside the range of its underlying
assumptions.

3. EXPERIMENTAL PROCEDURES

The experiment was designed around the following heuristic argument. For a fixed
specimen thickness and input amplitude, let A be the amplitude of the wave received
through the specimen. Then, as n — n., A should go through a sharp minimum.

An ultrasonic through-transmission direct-contact apparatus was used; it is sche-
matically shown in Fig. 1. The Time Mark Generator/Puise Generator/Function Gen-
erator/R.F. Amplifier combination was used to produce a toneburst (pulsed sine wave)
of desired duration and center frequency. The electrical signal was applied to one of
a pair of accurately matched piezoelectric transducers, and the specimens were acoust-

Time Mark Pulse Function Radio
Generator Generator Generator A.npliqu.f'i.r"y
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Scmplig! Oscilloscope Deloy Rod
A/D Converter Specimen
S| 3| g 8 Delay Rod =
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Fig. I. A schematic of the apparatus.
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ically coupled through polystyrene delay rods; a thin film of castor oil was used as
a couplant. In order to minimize the random variations in the oil layer thickness.
the entire assemblage was subjected to a constant axial load of about 100 N (20 Ibf.).
The received amplitude A was measured as a function of frequency n. Generally
the toneburst was 10-20 cycles long, and the measurement was made with a reference
peak near the center of the toneburst where the signal had reached steady state (i.e.
away from the two ends where transients are present). This allows us to assume that
consistent with the model, the composite had reached steady time-harmonic motion
when the measurement was made. Since the transfer function of the measurement
system (Fig. 1 without the specimens) is a smooth function of frequency. and since the
objective here is to locate n., no attempt was made to deconvolve the received signal
with respect to the transducer response. (In the early stages when this deconvolution
was carried out, it was found to make no measurable difference in locating »..).

Now n. is an intrinsic property of the composite; it does not depend upon the
overall dimensions of the composite. Therefore, in order to guard against fortuitous
results, two specimens of significantly different thicknesses (W) were tested for each
volume fraction (C). In each case essentially the same n. was obtained for both
thicknesses.

Specimen preparation

Lead spheres of 0.66-mm radius were suspended in an EPON-828Z epoxy ma-
trix[10]. Now the theory assumes an elastic matrix, whereas, strictly speaking, epoxy
is viscoelastic. Fortunately, over 0.3 = n < 5.0 MHz, C, and C; were found to be
frequency-independent and the attenuation. a, of the neat matrix was found to be small
compared to {a) for the composite; i.e. the scattering effects dominate the viscoelastic
effects and it appears reasonable to assume that the matrix behaves in an elastic manner.

The diameter of the largest transducer used was 25.4 mm (1 in.). In order to elim-
inate the error due to the reflection of the scattered waves at the lateral boundaries,
the cross-sectional dimensions of the composite were chosen to be 50.8 x 50.8 mm (2
X 2 in.). A mold with sixteen compartments was fabricated. A mixture of the resin
and the hardener was thoroughly degassed in a vacuum chamber, and then poured into
the mold. Subsequently, very accurately measured amounts of lead balls were sprin-
kled. Whenever clustering of the spheres occurred, they were dispersed by hand. Upon
curing, each square was machined accurately to a thickness calculated by d = a(4n/
3C)'3. The desired number of the squares was randomly stacked, a thin layer of the
matrix epoxy was applied to the mating surfaces, the assemblage was subjected to a
stitable pressure, and the curing cycle was repeated. Finally, the two longitudinal faces
were polished and lapped parallel to 25 wm. It is at this point that the final value was
assigned to the volume fraction of inclusions, C, by accurately measuring the density
of the specimen, (p):

C = (p) — ' — p). (6)

Table 1. List of specimens

Specimen €(%) C(%) w

Number Nominal Measured (mm)
13 5 5.4 15.60
14 v " 9.30
15A 15 15.9 7.62
16A " " 22.61
17 25 26.1 9.12
18 " " 5.44
19 35 34.0 7.98
20 " " 4.83

21 50 52.0 7.21
22 " " 4.32
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Table 2. Acoustic properties of the constituents

G C;
Material (mm/ps) (mm/ps) p v a (nepers/mm)
Epon 8282 2.64 1.20 1.202 0.372 0.043 @ | MHz
Lead 2.21 0.86 11.3 0.411 0.026 @ 2 MHz

An important question is whether there is a rigid bond (no-slip condition) between
the inclusions and the matrix as assumed in the theory. First, epoxy shrinks by about
5% as it cures; this virtually guarantees a compressive stress at the interface. Second,
the individual squares (before they are assembled to form the composite) are sufficiently
translucent, particularly at low C, to permit a photoelastic examination. A ‘‘clover-
leaf”” type fringe pattern was observed around each sphere, indicating the presence of
an interface stress; the first reason above was used fo conclude that this stress is
compressive: hence, the assumption of welded contact is justified.

A list of all the specimens used in this investigation is given in Table 1.

4. RESULTS

We first report the properties of the constituents. Several specimens with thickness
ranging from 15 to 50 mm were cast from the next epoxy. C;, C, and o were measured
in the frequency range of 0.3 = n =< 5.0 MHz and are given in Table 2; C, and C, are
accurate to +0.3%. See [4] for a detailed description of the methods to measure C,,
C, and «, as well as for a systematic error analysis. For the case of lead, direct meas-
urements cannot be carried out on the spherical particles. Three sheets of lead (5.08,
11.51 and 19.35 mm thick) made up of the same composition lead as was used to make
the spheres, were obtained from the vendor[11] and tested.

The attention is now drawn to Fig. 2. Here, Ao is the response of the measurement
system, i.e. the amplitude at the receiver (in millivolts) with the specimen removed
(see Fig. 1). Transducers with 0.5-MHz center-frequency were used in this measure-
ment; this explains the peak in Ao at 0.5 MHz. A, was measured at very small intervals
of An = 0.01 MHz.
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Fig. 2. The amplitude of the received signal exhibits a sharp minimum at the resonance frequency
for specimens of two different thicknesses. Transducers: 0.5 MHz. Ao s the frequency response
of the measurement system. The deconvolved response, A;4/4o, is also shown on a linear scale
to the right.
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Table 3. Measured and calculated values of n. in MHz

C(%) 0.054 0.159 0.261 0.340 0.520

Calculated 0.237 0.318 0.397 0.462 0.639
Measured 0.24 0.30/0.36  0.40 0.47 0.60/0.65

The amplitude received with lead/epoxy specimens 13 and 14 is also shown in Fig.
2. For each specimen, all settings were kept the same and only the frequency was
varied. Each frequency response curve was obtained in one continuous session. Fur-
thermore, all settings were kept fixed in going from the first specimen (13) to the second
(14) of the same volume fraction. The point of this precaution is that both A3 and
A, are equally affected by the systematic errors (subscripts refer to the specimen
number). Both A,; and A,, were measured at extremely small frequency intervals of
An = 0.01 MHz; only half the raw data could be plotted in Fig. 2. The minimum is
distinctly clear in both curves. Note that a logarithmic scale has been used; on a linear
scale, the minimum is considerably sharper. For specimen 13 (W = 15.60 mm), the
same minimum voltage was observed at n = 0.24 and 0.25 MHz; for specimen 14 (W
= 9.30 mm), the minimum was found at n = 0.23 MHz. Therefore, we claim an
accuracy of =0.01 MHz in the measurement; i.e. n. = 0.24 = 0.01 MHz. This is in
excellent agreement with the calculated value of n. = 0.237 MHz from (1); see also
Table 3 and Fig. 7. .

Properly, the specimen response should be deconvolved relative to (divided by)
the measurement system response prior to extracting n.. This has not been done; we
briefly mention the reasons. A4/Ay is also plotted in Fig. 2 on a linear scale shown on
the right. Near the calculated n. = 0.24 MHz, there is one minimum as expected.
However, there are two additional minima which have nothing to do with the physics
of the problem, and owe their existence to the fact that we have divided one set of
experimental data by another, and that both sets suffer from ubiquitous random errors.
It is recognized that the deconvolution will shift the position of the minimum; however,
an elementary calculation showed this shift to be negligibly smail. We conclude that
insofar as extracting n. from the raw data is concerned, more precise (although very
slightly less accurate) information can be obtained from the raw data than from the
deconvolved data.

g
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Fig. 3. Amplitude vs frequency for specimens of two different thicknesses. The signal in the
range 0.29 =< n = 0.36 MHz suffered from harmonic distortion. Transducers: 0.5 MHz.
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The results for specimens 15A and 16A are presented in Fig. 3 (C = 15.9%); the
system response, Ao, is omitted. For reasons which are still not clear, this particular
volume fraction presented some peculiar problems not encountered for C = 5.4%.
Therefore the conclusions regarding n. are not as unequivocal as was the case with
5.4% volume fraction, Fig. 2.

We first refer to the thicker specimen 16A (W = 22.61 mm). As n is increased
from 0.2 MHz, A6 goes through a sharp and reproducible minimum at n = 0.31 MHz,
which is in excellent agreement with the calculated value of n. = 0.318; see Fig. 7 and
Table 3. However, as 7 is further increased, the signal begins to suffer from harmonic
distortion. In other words, even though the wave entering the composite was sinusoidal,
the wave leaving it did not reach time-harmonic steady state during the period of ob-
servation, which is limited by spurious reflections from the boundaries of the apparatus.
This objection applies to the data in the range 0.29 =< n < 0.36 MHz. Therefore, in this
range, the amplitude cannot be trusted quantitatively. In particular, there is apparently
a second sharp minimum at n = 0.36 MHz. There is a second problem associated with
this part of data: the noise level was about I mV; the minimum at 0.36 MHz has an
amplitude of 2.2 mV. Thus the signal-to-noise ratio is less than satisfactory.

We now turn to the (thinner) specimen 15A. The first minimum occurs at 0.28
MHz (cf. calculated n. = 0.318 MHz). Consistent with 16A, there is a second minimum
at 0.36 MHz. The large jump in A (from 200 to 440 mV) in going from 0.36 to 0.37
MHz was considered very peculiar, and accordingly, checked several times.

Clearly, it is not possible to assign an unequivocal value to the measured n.. With
that proviso, the measured n.. is either 0.30 or 0.36 MHz.

The results for € = 26.1% are plotted in Figs. 4(a) and 4(b). Both 0.5- and 1.0-
MHz transducers were used. A very sharp minimum was observed for both transducers
and both thicknesses at n = 0.4 MHz; this is in excellent agreement with the calculated
n. = 0.397 MHz. We are unable to answer the following question. For the nominal,
C = 5%, 25% and 35% (to follow), an unequivocal sharp resonance was observed.
Why was a similar sharp resonance not observed for an intermediate C = 15%, Fig.
37

The results for C = 34.0% are plotted in Figs. 5(a) and 5(b). Once again, data was
collected with both 0.5- and 1.0-MHz transducers. Referring first to Fig. 5(a), a sharp
minimum at 0.466 MHz was observed for both thicknesses. For specimen 19, the min-
imum amplitude was below | mV; i.e. comparable to the noise (hence not plotted).
When we repeated the experiments with 1-MHz transducers, the minimum occurred
at 0.5 MHz. Since n. is very much closer to the natural frequency of the 0.5-MHz
transducer than it is to that of the 1.0-MHz transducer, the measurements with the 0.5-
MHz transducers are considered far more reliable; hence, n. = 0.466 =~ 0.47 MHz
(calculated value = 0.462 MHz). If all four curves are examined, one finds a second
minimum which does not occur at a fixed frequency. The average of the frequencies
at which it occurs is, roughly, n = 0.7 MHz. A plausible explanation for this additional
minimum will be offered later on.

Fig. 6 shows the results for the case of a concentrated suspension, C = 52%. At
this high-volume fraction. most of the spheres are indirect contact with their neighbors.
Therefore one would hardly expect a good comparison between the experiments and
a dilute-suspension theory. Nevertheless, the experimental results are included for the
sake of completeness. The theory predicts . = 0.639 MHz. For the thinner specimen
22. we notice a small, rather poorly defined, minimum at about 0.6 MHz (a well-defined
minimum at 0.9 MHz is believed to be due to some other resonance). Unfortunately,
corroborating results could not be obtained with the thicker specimen 21, because the
received amplitude fell below 1 mV where it gets buried in the noise. Nevertheless,
the first minimum (in the sense of increasing n) was noted at 0.65 MHz (the broken
lines imply that its measured values were below 1 mV). Based on the data obtained
with specimen 22. we assign the value of 0.6 MHz to n.: however, it is quite questionable
whether it indeed corresponds to the rigid body translation resonance under
consideration.
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Fig. 4. (a) The amplitude exhibits a minimum at 0.4 MHz for specimens of two different thick-
nesses. Transducers: 0.5 MHz. (b) When 1.0-MHz transducers are used (instead of 0.5 MHz
the minimum still occurs at 0.4 MHz. Therefore the measurement is independent of the trans-
ducer response.

In addition to the expected minimum associated with the resonance, other minima
were observed in these experiments. A plausible explanation is offered next. By virtue
of the assumption that the inclusion is rigid, the only motion accessible to the particie
in the model of Moon and Mow is the rectilinear translation. Now, lead is hardly “‘rigid”’
compared to epoxy; see Table 2. For a compliant or an elastic inclusion, there are
many other resonances possible. These have been studied explicitly by Flax and Uber-
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all[12], who showed that there is a doubly-infinite series of resonances. Furthermore,
these occur when k;a = 0.5. In the frequency range 0.2 = n < 1.8 MHz, we have 0.3
= ka = 2.8;i.e. the wave number is in the correct range for some of the lower resonance
modes to get excited. This may very well be the explanation for the additional minima.

In order to bring out the dependence of the resonance frequency on the volume
fraction, the theory and the experiment are compared in Fig. 7; the agreement is con-
sidered remarkably good. Here we have plotted ). = (k,a).. Note that kja = (1) in
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Fig. 5. (a) The minimum amplitude occurs at 0.466 MHz for both specimens. Transducers: 0.5
xgz. (b) When 1.0-MHz transducers are used (instead of 0.5 MHz). the minimum shifts to 0.5
z.
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Fig. 6. Amplitude vs frequency for two specimens of different thickness.

our experiments, whereas the theory assumes a vanishingly small k;a. We are led to
conclude that even though the theory of Moon and Mow is based upon a number of
rather restrictive assumptions, it accurately predicts the resonance frequency. We note
that lead is very much heavier than the matrix; on the other hand, lead is not very
much stiffer than the matrix. Therefore from the viewpoint of the scattering phenom-
enon, it may well be that in the present instance, the inertial-mismatch effect dominates
the elastic-mismatch effect; hence, the excellent comparison between the experiment
and the heavy-inclusion theory.
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Fig. 7. The comparison of the theory[6] and the experiment was found to be excellent, even
when C is large and even though ka = O(1).
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5. CONCLUSIONS

An approximate model for the longitudinal wave propagation behavior in a random
particulate composite has been given by Moon and Mow. We have measured the res-
onance frequency for a lead/epoxy composite as a function of the volume fraction of
inclusions. The model has been shown to predict the measured values quite accurately
even when the following assumptions of the model are clearly violated: (1) The inclu-
sions are rigid, (2) the wavelength is large compared to the size of the inclusion and (3)
the volume fraction is small. Thus the model has been shown to be quite good, well
outside the range of its underlying assumptions.
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